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We discuss the propagation of nonlinear electromagnetic short waves in a magnetically saturated ferromag-
netic thick film. The sample is magnetized to saturation by a field perpendicular to both the film plane and the
propagation direction. A �2+1� dimensional asymptotic model equation generalizing the sine-Gordon one is
derived. Line soliton solutions are exhibited; their stability condition is derived. When unstable, line solitons
decay into stable two-dimensional lumps, which are studied both numerically and analytically.
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Electromagnetic wave propagation in a saturated ferro-
magnetic medium is usually described by the so-called
Maxwell-Landau-Lifschitz model, which consists of the
Maxwell equations, supplemented with the Landau-Lifschitz
relation between the magnetization density M and the mag-
netic field H. The resulting coupled system is highly nonlin-
ear and dispersive, in contrast with nonmagnetic or paramag-
netic materials, in which the usual constitutive relations are
linear, and the wave equations can be solved exactly by Fou-
rier methods. A lot of studies were devoted to approximate
wave solutions of the Maxwell-Landau-Lifschitz system.
They allow us to go round the fully nonlinear and dispersive
system, not exactly solvable, and to derive intermediate
asymptotic models �1� as it is proceeded in other physical
contexts such as hydrodynamics, elasticity, and optics, i.e.,
using asymptotic expansions. Intermediate asymptotic mod-
els are valid at distances and times such that details and
features of secondary importance to the phenomenon be neg-
ligible and vanish. At the same time they retain and account
for the features essential for the comprehension of the phe-
nomenon. This way nonlinear solitary wave propagation and
Korteweg–de Vries �KdV�-type solitons have been theoreti-
cally described �2� and then extended to �2+1� dimensions
as solutions to the Kadomtsev-Petviashvili �KP� model �3,4�.

Other kinds of intermediate asymptotic model can be ob-
tained using the slowly varying envelope approximation
�SVEA�. The SVEA produces as an intermediate universal
asymptotic model the nonlinear Schrödinger equation �NLS�
�5�. Envelope solitons of NLS have been theoretically de-
scribed and experimentally observed �6–10�. Dark solitons
have also been predicted �10,11� and observed �12�. In �2
+1� dimensions, NLS generalizes to the Davey-Stewartson
system �13,14�.

All these studies were based on long-wave-type approxi-
mations: solitons of KdV or line solitons of KP have wave-
lengths larger than some typical scale of the sample and NLS
represents dynamics of envelope waves of wavelengths
larger than the underlying carrier’s one. Consequently, these
models and their solutions are useful to predict the behavior
of large-scale phenomena.

Nowadays studies on short-wave-type approximations,
started in the rather different context of hydrodynamics �15�,
have been adapted to be used in ferromagnetic media
�16–18�. The continuation of this program is the objective of

the present work. In Refs. �16,17� the sine qua non condition
that short waves propagate only in the direction perpendicu-
lar to the initial magnetization density M0 was found. We
consider a ferromagnetic thick film lying in the xy plane, a
short wave propagating along x. In �17,18�, M0 belonged to
the plane of the film, as M0= �0,m ,0�, where m is the nor-
malized saturation magnetization. Such a configuration ful-
fils the short-wave propagation condition. Here we assume
that the external magnetic field is perpendicular to the film,
i.e., M0= �0,0 ,m�, which satisfies the propagation condition
�Fig. 1�. The questions we would like to answer in this work
are: �a� how does the associated linear analysis change, �b�
what is the �2+1� asymptotic model equation �if any� in-
duced by the new steady state, �c� how possible solutions
behave faced with perturbations, and �d� does the back-
ground instability, discovered in �17�, appear here ?

The thick film is magnetized to saturation by an external
field Hext directed along z. The evolution of the magnetic
field H is governed by the Maxwell equations, which reduce
to

− ��� · H� + �H = c−2�t
2�H + M� , �1�

where c=1 /��0�̃ is the speed of light with �̃ the scalar per-
mittivity of the medium. The magnetization density M obeys
the Landau-Lifschitz equation, which reads as

�tM = − ��0M ∧ H +
�

Ms
M ∧ �M ∧ H� , �2�

where � is the gyromagnetic ratio, �0 is the magnetic per-
meability in vacuum, ��0 is the damping constant, and Ms
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FIG. 1. The configuration considered.

PHYSICAL REVIEW E 80, 037602 �2009�

1539-3755/2009/80�3�/037602�4� ©2009 The American Physical Society037602-1

http://dx.doi.org/10.1103/PhysRevE.80.037602


is the saturation magnetization. The internal magnetic field H
is related to Hext through

H = Hext − N · M , �3�

where N is the demagnetizing factor tensor. Here N is diag-
onal with �Nx ,Ny ,Nz�= �0,0 ,1�.

We neglect inhomogeneous exchange since we consider
bulk polaritons in a ferromagnet: in this case the wavelengths
are large with regard to the exchange length. Surface aniso-
tropy has a determinant effect on surface modes and in thin
films. However, since the validity of the present study is
restricted to volume modes in thick films, surface anisotropy
can also be neglected. We also assume that the crystalline
anisotropy of the sample is negligible. It can be conjectured
that, for an easy axis perpendicular to the plane of the film,
the crystalline anisotropy would not modify qualitatively the
results of the present Brief Report. The quantities M, H, and
t are rescaled into �0�M /c, �0�H /c, and ct so that the con-
stants �0� /c and c in Eqs. �1� and �2� are replaced by 1, Ms
by m=�0�Ms /c, and � by �̃=� /�0�, which is dimension-
less.

In order to study the linear regime, we linearize Eqs. �1�
and �2� about the steady state

M0 = �0,0,m�, H0 = �0,0,H0� , �4�

where m is the normalized saturation magnetization and H0
= ��−1�m so that � is the strength of the external field in
units of Ms. We seek for plane-wave solutions of the form

M = M0 + mei�, H = H0 + hei�, �5�

where m and h are small constant vectors to be determined,
and the phase is �=kx+ ly−	t where k and l are the wave
numbers in the x and y directions and 	 is the frequency.

Neglecting damping and linearizing Eqs. �1�–�5� about
M0, H0, we obtain the dispersion relation

	2�	2 − k2 − l2� − �m2�	2 + �� − 1��	2 − k2 − l2�� = 0.

�6�

According to the short-wave approximation procedure
�15�, we introduce a small parameter � linked to the magni-
tude of the wavelength through k=k0 /�. The direction of the
wave propagation is assumed to be close to the x axis in such
a way that the y variable gives only account of a slow trans-
verse deviation. Therefore l is assumed to be very small with
respect to k and we write l= l0 of order 0 with respect to �.
We obtain

	 =
k0

�
+

�m2 + l0
2

2k0
� + O��3� , �7�

which proves that the short-wave approximation is possible
and motivates the introduction of the scaled variables


 = �x − Vt�/�, y = y, � = �t . �8�

The variable 
 describes the shape of the wave propagating
at speed V; it assumes a short wavelength about 1 /�. The
slow time variable � accounts for the propagation during
very long time on very large distances with regard to the
wavelength. The transverse variable y has an intermediate

scale, as in KP-type expansions �3,5�. In order to derive the
nonlinear model, fields M and H are expanded in power
series of � as

M = M0 + �M1 + �2M2 + ¯ , �9�

where M0 ,M1 , . . .,are functions of �
 ,y ,�� and analogously
for H. They vanish at infinity except that M0 and H0 tend to
�0,0 ,m� and �0,0 , ��−1�m�, respectively. Expansion �9� and
scaling �8� are substituted into Eqs. �1� and �2� and solved
order by order. At leading order �1 /�2 in Eq. �1� and 1 /� in
Eq. �2�� it is found that M0 is uniform, H0

x is zero, while H0
y

and H0
z remain free if V=1. We consider now this value of

the velocity V. At following order, we find that

M1 = − m�
−�




H0
yd
�ex, �10�

with ex being the unitary vector along x and

H1
x = m�

−�




H0
yd
� − �

−�




�yH0
yd
�, �11�

while H1
y and H1

z are free.
At second order, after elimination of M2

y and M2
z , we ob-

tain

�
�yH1
x + �
�mH1

x − M1
xH0

z� − 2�
��H0
y = 0, �12�

�y
2H0

z − �
�M1
xH0

y� + 2�
��H0
z = 0. �13�

Finally, eliminating M1
x and H1

x from Eqs. �12� and �13� with
the help of Eqs. �10� and �11�, we obtain evolution equations
for H0

y and H0
z as

2�
��H0
y = �m2 − �y

2�H0
y + m�
�H0

z�
−�




H0
yd
�� , �14�

2�
��H0
z = − �y

2H0
z − m�
�H0

y�
−�




H0
yd
�� . �15�

Introducing dimensionless field and variables, system �14�–
�15� reduces to

CXT = − BBX + CYY , �16�

BXT = BCX + BYY . �17�

with X=−mx /2, Y =my, T=mt, H0
y =−mBX, H0

z =−m�1+CX�,
and the subscript denotes partial derivative.

System �16�–�17� coincides with the one derived in Refs.
�17,18� except that the transverse drift �terms involving BY
and CY� is absent. The scaling of the field and variables is the
same except that y and z components are inverted, which is a
natural consequence of the change in the direction of the
applied field. Due to the applied field, the solutions of system
�16�–�17� must satisfy the boundary conditions

lim
X→�

BX = 0, lim
X→�

CX = − � . �18�

Notice that the strength of the external field does not appear
in the equations except through boundary condition �18�.
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If transverse variations are neglected, system �16�–�17�
reduces to the sine-Gordon �sG� equation as the system de-
rived in the case of the in-plane field does. Hence from the
kink solution of sG, the line soliton �17� is deduced,

B = 2w sech z, C = w�2 tanh z − z� , �19�

where z=X−wT, with w the soliton velocity.
The stability of line soliton �19� with respect to slow

transverse perturbations is studied following the same ap-
proach as in �17�. We introduce a slow transverse perturba-
tion � of the variable z and expand the fields in a perturbation
series about the line soliton as

B = B0 + B1 + ¯ , C = C0 + C1 + ¯ , �20�

where  is a small parameter and B0 and C0 have the expres-
sion given by Eq. �19�, with z perturbed as

z = X − wT + ��Y,T� . �21�

The variables y and t are denoted by Y and T, respec-
tively. The expansion is then reported into system �16�–�17�
and solved order by order. The expressions are the same as in
�17� except that the terms proportional to �Y in the equations
and in the expressions of B1 are absent. The final expression
of C1z is exactly the same. In each of the two equations
obtained at order 2, a term proportional to 	zB1Y is missing
and so is the term proportional to C1Y is the second equation.
Finally an equation of the same form is obtained,

H�TT + I�YY + J�YY = 0, �22�

with the same H=−2, but J=0 and I=−4w, instead of J
=2� and I=−4�w+1� in �17�. Thus

− 2�TT − 4w�YY = 0. �23�

Then considering solutions of Eq. �23� of the form �
=exp�i	Y+�T�, it is seen that � is purely imaginary and no
instability occurs if w�0. As a conclusion, the line soliton is
stable if its velocity w is negative and unstable for w�0.

Comparing Eq. �18� with Eq. �19� shows that the speed w
of the line soliton must be equal to the strength a of the
external field. The stability condition w�0 for the line soli-
ton corresponds to the assumption that the external field has

the direction opposite to that of the saturated magnetization,
which is known to be an unstable state.

In the case of the in-plane applied field, a transverse back-
ground instability occurs and can be removed by means of a
narrowing of the sample �18�. No transverse background in-
stability occurs here.

System �16�–�17� is solved numerically using the scheme
presented in Ref. �17�. The propagation of an initially per-
turbed stable line soliton is shown on Fig. 2. It propagates
backward in the moving frame. Numerical computation
shows the arising of many other waves coming from infinity.
It has been checked by using several modifications of the
numerical method that this phenomenon is not a numerical
artifact. It is related to the instability of the background,
which is purely longitudinal here, in contrast with the case of
the in-plane magnetization.

On the other hand, an initial unstable line soliton splits
into stable two-dimensional lumps �see Fig. 3�. They can be
investigated by means of a variational approach. System
�16�–�17� derives from the Lagrangian density

L =
1

2
�CXCT + BXBT − �CY�2 − �BY�2 + CXB2� �24�

through �L /�C=0 and �L /�B=0. We seek for traveling so-
lutions of Eqs. �16� and �17�, including a background field
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FIG. 2. �Color online� Propagation of an initially perturbed stable line soliton. �a� Hy component; �b� Hz component.
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FIG. 3. �Color online� An initial unstable line soliton splits into
lumps.
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H0= �0,0 , ��−1�m�; i.e., B=B�X−vT ,Y� and C=−�X
+C��X−vT ,Y�. The equations are the same as in �17� except
that the transverse drift terms BY and CY are absent. We
compute an effective Lagrangian density and make use of the
ansatz

B = p exp�− X2/f2 − Y2/g2� , �25�

C = − �X exp�− X2/f2 − Y2/g2� . �26�

The Lagrangian L=	R2Lef fdXdY is computed by standard
methods and then a set of four equations is obtained by de-
riving L with respect to the dynamical variables p, �, f2, and
g2. It can be solved to yield

p2 = − 9��1 + 3qv�/8q, � = − 9�/2, �27�

f2 = �1 + qv�/�q, g2 = qf2, �28�

with q= �2+�13� /3v. We have thus obtained a two param-
eter family of lumps, with the parameters being the applied
field strength � and the lump velocity v; both � and v must
be positive. The variational lump is shown in Fig. 4. Numeri-
cal resolution of system �16�–�17�, using the above varia-
tional approximation as an input, confirms the validity of the
latter and proves the stability of the lumps, at least for the
considered numerical examples.

As a conclusion, the main difference with the configura-
tion with in-plane external field is the absence of the trans-
verse drift. This feature simplifies the stability condition of
the line solitons and suppresses the transverse instability of
the background when they are stable. It also allows a more
simple, explicit, and accurate description of the lumps by the
variational analysis in the case of stable line solitons

This work is made in the framework of CNRS GDR-
PhoNoMi2 �Photonique Nonlinéaire et Milieux Microstruc-
turés�.
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FIG. 4. �Color online� The variational lump. �a� Hy component;
�b� Hz component ��=2, v=1. Dimensionless�.
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